Transparent Solar Film Gets Big Efficiency Boost

A novel, transparent, two-layer solar film — possessing an impressive efficiency conversion of 7.3% — has been created by researchers at the University of California–Los Angeles. This is about double the transparent solar cell efficiency the researchers had previously achieved. The solar film can be placed on windows, buildings, sunroofs, electronics displays, etc; harvesting energy while still at the same time allowing light to pass through and visibility/transparency to be maintained.

The new solar film is essentially an improved form of the “breakthrough photovoltaic cell design” that the same researchers unveiled last year – an improved form with nearly double the efficiency, that is. It consists of two thin polymer solar cells that work together to maximize sunlight collection and conversion to electricity — the two cells absorb more light than single-layer solar devices do because together they absorb light from a wider part of the solar spectrum. There’s also a thin layer of ‘novel materials’ present between the two cells that works to reduce energy loss.

Written by Nathan. To read the full article, click here.

Advertisements

Stanford Researchers Develop Record-Breaking Thinner Solar Cells That Absorb More Light

Solar power research is a big deal. Scientists have been searching for a way to improve photovoltaic efficacy for years by developing new technologies – from giant solar concentrator arrays to satellites that beam power back to Earth. Now, Stanford University researchers have developed what they call the thinnest, most efficient photovoltaic wafers ever. Instead of increasing the size of the solar arrays, the researchers created solar wafers with a nano-sized structure that is 1,000 times thinner than any other commercially available thin-film solar cell absorbers.

According to the researchers, the thin film solar wafers are only 1.6 nanometers thin, which cuts down on materials required to produce the cells while making them lighter. At the same time, all of this was done without comprising the solar cells’ ability to absorb visible light. These smaller photovoltaic cells can actually absorb parts of the visible light spectrum with incredible efficiency.

“The coated wafers absorbed 99 percent of the reddish-orange light,” Carl Hagglund, postdoctoral scholar at Department of Chemical Engineering and lead author on the study, said in a statement. “We also achieved 93 percent [light] absorption in the gold nanodots themselves.”

Written by Kevin Lee. To read the full article, click here.